1,121 research outputs found

    Common Law Remedies: A Refresher

    Get PDF

    Crossing the superfluid-supersolid transition of an elongated dipolar condensate

    Get PDF
    We provide a theoretical characterization of the dynamical crossing of the superfluid-supersolid phase transition for a dipolar condensate confined in an elongated trap, as observed in the recent experiment by G. Biagioni et al. [Phys. Rev. X 12, 021019 (2022)]. By means of the extended Gross-Pitaevskii theory, which includes the Lee-Huang-Yang quantum fluctuation correction, we first analyze the ground state configurations of the system as a function of the interparticle scattering length, for both trap configurations employed in the experiment. Then, we discuss the effects of the ramp velocity, by which the scattering length is tuned across the transition, on the collective excitations of the system in both the superfluid and supersolid phases. We find that, when the transverse confinement is sufficiently strong and the transition has a smooth (continuous) character, the system essentially displays a (quasi) 1D behavior, its excitation dynamics being dominated by the axial breathing modes. Instead, for shallower transverse trapping, when the transition becomes discontinuous, the collective excitations of the supersolid display a coupling with the transverse modes, signalling the onset of a dimensional crossover.Comment: 9 pages, 8 figure

    Impacts of climate change and rising atmospheric CO2 on future projected reference evapotranspiration in Emilia-Romagna (Italy)

    Get PDF
    The continuous increase of atmospheric CO2 content mainly due to anthropogenic CO2 emissions is causing a rise in temperature on earth, altering the hydrological and meteorological processes and affecting crop physiology. Evapotranspiration is an important component of the hydrological cycle. Thus, understanding the change in evapotranspiration due to global warming is essential for better water resources planning and management and agricultural production. In this study, the effect of climate change with a focus on the combined effect of temperature and elevated CO2 concentrations on reference evapotranspiration (ETo) was evaluated using the Penman–Monteith equation. A EURO-CORDEX regional climate model (RCM) ensemble was used to estimate ETo in five locations in the Emilia-Romagna region (Northern Italy) during the period 2021–2050. Then, its projected changes in response to different CO2 concentrations (i.e., 372 ppm and 550 ppm) under two Representative Concentration Pathways (RCP) scenarios (i.e., RCP4.5 and RCP8.5) were analyzed. Simulation results with both scenarios, without increasing CO2 levels (372 ppm), showed that the annual and summertime ETo for all locations increased by an average of 4 to 5.4% with regard to the reference period 1981–2005, for an increase of air temperature by 1 to 1.5 °C. When the effect of elevated CO2 levels (550 ppm) was also considered in combination with projected changes in temperature, changes in both annual and summer ETo demand for all locations varied from − 1.1 to 2.2% during the 2021–2050 period with regard to the reference period 1981–2005. This shows that higher CO2 levels moderated the increase in ETo that accompanies an increase in air temperature

    The EEE Project

    Get PDF
    The new experiment ``Extreme Energy Events'' (EEE) to detect extensive air showers through muon detection is starting in Italy. The use of particle detectors based on Multigap Resistive Plate Chambers (MRPC) will allow to determine with a very high accuracy the direction of the axis of cosmic ray showers initiated by primaries of ultra-high energy, together with a high temporal resolution. The installation of many of such 'telescopes' in numerous High Schools scattered all over the Italian territory will also allow to investigate coincidences between multiple primaries producing distant showers. Here we present the experimental apparatus and its tasks.Comment: 4 pages, 29th ICRC 2005, Pune, Indi

    New light-emitting functionalized oligothiophenes

    Get PDF
    We present a new class of highly photo and electroluminescent oligomers based on the presence of one inner thienyl-S,S-dioxide unit as the luminophore. The light emission frequency of the new compounds, which are characterized by greater electron affinities than the corresponding oligomers bearing an unmodified thienyl ring, was tuned over the entire visible range by changing the nature of the alkyl or aryl groups attached in the α- and/or in the β-positions of the thienyl-S,S-dioxide moiety. A few aspects of the solid state supramolecular organization of the new compounds are reported

    Development of Quantum Dot (QD) Based Color Converters for Multicolor Display.

    Get PDF
    Many displays involve the use of color conversion layers. QDs are attractive candidates as color converters because of their easy processability, tuneable optical properties, high photoluminescence quantum yield, and good stability. Here, we show that emissive QDs with narrow emission range can be made in-situ in a polymer matrix, with properties useful for color conversion. This was achieved by blending the blue-emitting pyridine based polymer with a cadmium selenide precursor and baking their films at different temperatures. To achieve efficient color conversion, blend ratio and baking temperature/time were varied. We found that thermal decomposition of the precursor leads to highly emissive QDs whose final size and emission can be controlled using baking temperature/time. The formation of the QDs inside the polymer matrix was confirmed through morphological studies using atomic force microscopy (AFM) and transmission electron microscopy (TEM). Hence, our approach provides a cost-effective route to making highly emissive color converters for multi-color displays
    corecore